Transhumanismus

A Massive Study Is Revealing Why Exercise Is So Good for Our Health

Singularity HUB - 6 Květen, 2024 - 21:30

We all know that exercise is good for us.

A brisk walk of roughly an hour a day can stave off chronic diseases, including heart or blood vessel issues and Type 2 diabetes. Regular exercise delays memory loss due to aging, boosts the immune system, slashes stress, and may even increase lifespan.

For decades, scientists have tried to understand why. Throughout the body, our organs and tissues release a wide variety of molecules during—and even after—exercise to reap its benefits. But no single molecule works alone. The hard part is understanding how they collaborate in networks after exercise.

Enter the Molecular Transducers of Physical Activity Consortium (MoTrPAC) project. Established nearly a decade ago and funded by the National Institutes of Health (NIH), the project aims to create comprehensive molecular maps of how genes and proteins change after exercise in both rodents and people. Rather than focusing on single proteins or genes, the project takes a Google Earth approach—let’s see the overall picture.

It’s not simply for scientific curiosity. If we can find important molecular processes that trigger exercise benefits, we could potentially mimic those reactions using medications and help people who physically can’t work out—a sort of “exercise in a pill.”

This month, the project announced multiple results.

In one study, scientists built an atlas of bodily changes before, during, and after exercise in rats. Altogether, the team collected nearly 9,500 samples across multiple tissues to examine how exercise changes gene expression across the body. Another study detailed differences between sexes after exercise. A third team mapped exercise-related genes to those associated with diseases.

According to the project’s NIH webpage: “When the MoTrPAC study is completed, it will be the largest research study examining the link between exercise and its improvement of human health.”

Work It

Our tissues are chatterboxes. The gut “talks” to the brain through a vast maze of molecules. Muscles pump out proteins to fine-tune immune system defenses. Plasma—the liquid part of blood—can transfer the learning and memory benefits of running when injected into “couch potato” mice and delay cognitive decline.

Over the years, scientists have identified individual molecules and processes that could mediate these effects, but the health benefits are likely due to networks of molecules working together.

“MoTrPAC was launched to fill an important gap in exercise research,” said former NIH director Dr. Francis Collins in a 2020 press release. “It shifts focus from a specific organ or disease to a fundamental understanding of exercise at the molecular level—an understanding that may lead to personalized, prescribed exercise regimens based on an individual’s needs and traits.”

The project has two arms. One observes rodents before, during, and after wheel running to build comprehensive maps of molecular changes due to exercise. These maps aim to capture gene expression alongside metabolic and epigenetic changes in multiple organs.

Another arm will recruit roughly 2,600 healthy volunteers aged 10 to over 60 years old. With a large pool of participants, the team hopes to account for variation between people and even identify differences in the body’s response to exercise based on age, gender, or race. The volunteers will undergo 12 weeks of exercise, either endurance training—such as long-distance running—or weightlifting.

Altogether, the goal is to detect how exercise affects cells at a molecular level in multiple tissue types—blood, fat, and muscle.

Exercise Encyclopedia

Last week, MoTrPAC released an initial wave of findings.

In one study, the group collected blood and 18 different tissue samples from adult rats, both male and female, as they happily ran for a week to two months. The team then screened how the body changes with exercise by comparing rats that work out with “couch potato” rats as a baseline. Physical training increased the rats’ aerobic capacity—the amount of oxygen the body can use—by roughly 17 percent.

Next, the team analyzed the molecular fingerprints of exercise in whole blood, plasma, and 18 solid tissues, including heart, liver, lung, kidney, fat tissue, and the hippocampus, a brain region associated with memory. They used an impressive array of tools that, for example, captured changes in overall gene expression and the epigenetic landscape. Others mapped differences in the body’s proteins, fat, immune system, and metabolism.

“Altogether, datasets were generated from 9,466 assays across 211 combinations of tissues and molecular platforms,” wrote the team.

Using an AI-based method, they integrated the results across time into a comprehensive molecular map. The map pinpointed multiple molecular changes that could dampen liver diseases, inflammatory bowel disease, and protect against heart health and tissue injuries.

All this represents “the first whole-organism molecular map” capturing how exercise changes the body, wrote the team. (All of the data is free to explore.)

Venus and Mars

Most previous studies on exercise in rodents focused on males. What about the ladies?

After analyzing the MoTrPAC database, another study found that exercise changes the body’s molecular signaling differently depending on biological sex.

After running, female rats triggered genes in white fat—the type under the skin—related to insulin signaling and the body’s ability to form fat. Meanwhile, males showed molecular signatures of a ramped up metabolism.

With consistent exercise, male rats rapidly lost fat and weight, whereas females maintained their curves but with improved insulin signaling, which might protect them against heart diseases.

A third study integrated gene expression data collected from exercised rats with disease-relevant gene databases previously found in humans. The goal is to link workout-related genes in a particular organ or tissue with a disease or other health outcome—what the authors call “trait-tissue-gene triplets.” Overall, they found 5,523 triplets “to serve as a valuable starting point for future investigations,” they wrote.

We’re only scratching the surface of the complex puzzle that is exercise. Through extensive mapping efforts, the project aims to eventually tailor workout regimens for people with chronic diseases or identify key “druggable” components that could confer some health benefits of exercise with a pill.

“This is an unprecedented large-scale effort to begin to explore—in extreme detail—the biochemical, physiological, and clinical impact of exercise,” Dr. Russell Tracy at the University of Vermont, a MoTrPAC member, said in a press release.

Image Credit: Fitsum Admasu / Unsplash

Kategorie: Transhumanismus

This Week’s Awesome Tech Stories From Around the Web (Through May 4)

Singularity HUB - 4 Květen, 2024 - 16:00
ARTIFICIAL INTELLIGENCE

Sam Altman Says Helpful Agents Are Poised to Become AI’s Killer Function
James O’Donnell | MIT Technology Review
“Altman, who was visiting Cambridge for a series of events hosted by Harvard and the venture capital firm Xfund, described the killer app for AI as a ‘super-competent colleague that knows absolutely everything about my whole life, every email, every conversation I’ve ever had, but doesn’t feel like an extension.’ It could tackle some tasks instantly, he said, and for more complex ones it could go off and make an attempt, but come back with questions for you if it needs to.”archive page

COMPUTING

Expect a Wave of Wafer-Scale Computers
Samuel K. Moore | IEEE Spectrum
“At TSMC’s North American Technology Symposium on Wednesday, the company detailed both its semiconductor technology and chip-packaging technology road maps. While the former is key to keeping the traditional part of Moore’s Law going, the latter could accelerate a trend toward processors made from more and more silicon, leading quickly to systems the size of a full silicon wafer. …In 2027, you will get a full-wafer integration that delivers 40 times as much compute power, more than 40 reticles’ worth of silicon, and room for more than 60 high-bandwidth memory chips, TSMC predicts.”

FUTURE

Nick Bostrom Made the World Fear AI. Now He Asks: What if It Fixes Everything?
Will Knight | Wired
“With the publication of his last book, Superintelligence: Paths, Dangers, Strategies, in 2014, Bostrom drew public attention to what was then a fringe idea—that AI would advance to a point where it might turn against and delete humanity. …Bostrom’s new book takes a very different tack. Rather than play the doomy hits, Deep Utopia: Life and Meaning in a Solved World, considers a future in which humanity has successfully developed superintelligent machines but averted disaster.”

TECH

AI Start-Ups Face a Rough Financial Reality Check
Cade Metz, Karen Weise, and Tripp Mickle | The New York Times
“The AI revolution, it is becoming clear in Silicon Valley, is going to come with a very big price tag. And the tech companies that have bet their futures on it are scrambling to figure out how to close the gap between those expenses and the profits they hope to make somewhere down the line.”

ROBOTICS

Every Tech Company Wants to Be Like Boston Dynamics
Jacob Stern | The Atlantic
“Clips of robots running faster than Usain Bolt and dancing in sync, among many others, have helped [Boston Dynamics] reach true influencer status. Its videos have now been viewed more than 800 million times, far more than those of much bigger tech companies, such as Tesla and OpenAI. The creator of Black Mirror even admitted that an episode in which killer robot dogs chase a band of survivors across an apocalyptic wasteland was directly inspired by Boston Dynamics’ videos.”

ETHICS

ChatGPT Shows Better Moral Judgment Than a College Undergrad
Kyle Orland | Ars Technica
“In ‘Attributions toward artificial agents in a modified Moral Turing Test’…[Georgia State University] researchers found that morality judgments given by ChatGPT4 were ‘perceived as superior in quality to humans’ along a variety of dimensions like virtuosity and intelligence. But before you start to worry that philosophy professors will soon be replaced by hyper-moral AIs, there are some important caveats to consider.”

SPACE

New Space Company Seeks to Solve Orbital Mobility With High Delta-V Spacecraft
Eric Berger | Ars Technica
“[Portal Space Systems founder, Jeff Thornburg] envisions a fleet of refuelable Supernova vehicles at medium-Earth and geostationary orbit capable of swooping down to various orbits and providing services such as propellant delivery, mobility, and observation for commercial and military satellites. His vision is to provide real-time, responsive capability for existing satellites. If one needs to make an emergency maneuver, a Supernova vehicle could be there within a couple of hours. ‘If we’re going to have a true space economy, that means logistics and supply services,’ he said.”

AUTOMATION

Google’s Waymo Is Expanding Its Self-Driving ‘Robotaxi’ Testing
William Gavin | Quartz
“Waymo plans to soon start testing fully autonomous rides across California’s San Francisco Peninsula, despite criticism and concerns from residents and city officials. In the coming weeks, Waymo employees will begin testing rides without a human driver on city streets north of San Mateo, the company said Friday.”

VIRTUAL REALITY

Ukraine Unveils AI-Generated Foreign Ministry Spokesperson
Agence France-Presse | The Guardian
“Dressed in a dark suit, the spokesperson introduced herself as Victoria Shi, a ‘digital person,’ in a presentation posted on social media. The figure gesticulates with her hands and moves her head as she speaks. The foreign ministry’s press service said that the statements given by Shi would not be generated by AI but ‘written and verified by real people.'”

Image Credit: Drew Walker / Unsplash

Kategorie: Transhumanismus

This Plastic Is Embedded With Bacterial Spores That Break It Down After It’s Thrown Out

Singularity HUB - 2 Květen, 2024 - 20:49

Getting microbes to eat plastic is a frequently touted solution to our growing waste problem, but making the approach practical is tricky. A new technique that impregnates plastic with the spores of plastic-eating bacteria could make the idea a reality.

The impact of plastic waste on the environment and our health has gained increasing attention in recent years. The latest round of UN talks aiming for a global treaty to end plastic pollution just concluded in Ottawa, Canada earlier this week, though considerable disagreements remain.

Recycling will inevitably be a crucial ingredient in any plan to deal with the problem. But a 2022 report from the Organization for Economic Cooperation and Development found only 9 percent of plastic waste ever gets recycled. That’s partly due to the fact that existing recycling approaches are energy intensive and time consuming.

This has spurred a search for new approaches, and one of the most promising is the use of bacteria to break down plastics, either by rendering them harmless or using them to produce building blocks that can be repurposed into other valuable materials and chemicals. The main problem with the approach is making sure plastic waste ends up in the same place as these plastic-loving bacteria.

Now, researchers have come up with an ingenious solution: embed microbes in plastic during the manufacturing process. Not only did the approach result in 93 percent of the plastic biodegrading within five months, but it even increased the strength and stretchability of the material.

“What’s remarkable is that our material breaks down even without the presence of additional microbes,” project co-leader Jon Pokorski from the University of California San Diego said in a press release.

“Chances are, most of these plastics will likely not end up in microbially rich composting facilities. So this ability to self-degrade in a microbe-free environment makes our technology more versatile.”

The main challenge when it came to incorporating bacteria into plastics was making sure they survived the high temperatures involved in manufacturing the material. The researchers worked with a soft plastic called thermoplastic polyurethane (TPU), which is used in footwear, cushions, and memory foam. TPU is manufactured by melting pellets of the material at around 275 degrees Fahrenheit and then extruding it into the desired shape.

Given the need to survive these high temperatures, the researchers selected a plastic-eating bacteria called Bacillus subtilis, which can form spores allowing it to survive harsh conditions. Even then, they discovered more than 90 percent of the bacteria were killed in under a minute at those temperatures.

So, the team used a technique called adaptive laboratory evolution to create a more heat-tolerant strain of the bacteria. They dunked the spores in boiling water for increasing lengths of time, collecting the survivors, growing the population back up, and then repeating the process. Over time, this selected for mutations that conferred greater heat tolerance, until the researchers were left with a strain that was able to withstand the manufacturing process.

When they incorporated the spores into the plastic, they were surprised to find the bacteria actually improved the mechanical properties of the material. In essence, the spores acted like steel rebar in concrete, making it harder to break and increasing its stretchability.

To test whether the impregnated spores could help the plastic biodegrade, the researchers took small strips of the plastic and put them in sterilized compost. After five months, they found the strips had lost 93 percent of their mass compared to 44 percent for TPU without spores, which suggests the spores were reactivated by nutrients in the compost and helped degrade the plastic substantially faster.

It’s unclear if the approach would work with other plastics, though the researchers say they plan to find out. There is also a danger the spores could reactivate before the plastic is disposed of, which could shorten the life of any products made with it. Perhaps most crucially, plastics researcher Steve Fletcher from the University of Portsmouth in the UK told the BBC that this kind of technology could distract from efforts to limit plastic waste.

“Care must be taken with potential solutions of this sort, which could give the impression that we should worry less about plastic pollution because any plastic leaking into the environment will quickly, and ideally safely, degrade,” he said. “For the vast majority of plastics, this is not the case.”

Given the scale of the plastic pollution problem today though, any attempt to mitigate the harm should be welcomed. While it’s early days, the prospect of making plastic that can biodegrade itself could go a long way towards tackling the problem.

Image Credit: David Baillot/UC San Diego Jacobs School of Engineering

Kategorie: Transhumanismus

AI Is Gathering a Growing Amount of Training Data Inside Virtual Worlds

Singularity HUB - 1 Květen, 2024 - 18:52

To anyone living in a city where autonomous vehicles operate, it would seem they need a lot of practice. Robotaxis travel millions of miles a year on public roads in an effort to gather data from sensors—including cameras, radar, and lidar—to train the neural networks that operate them.

In recent years, due to a striking improvement in the fidelity and realism of computer graphics technology, simulation is increasingly being used to accelerate the development of these algorithms. Waymo, for example, says its autonomous vehicles have already driven some 20 billion miles in simulation. In fact, all kinds of machines, from industrial robots to drones, are gathering a growing amount of their training data and practice hours inside virtual worlds.

According to Gautham Sholingar, a senior manager at Nvidia focused on autonomous vehicle simulation, one key benefit is accounting for obscure scenarios for which it would be nearly impossible to gather training data in the real world.

“Without simulation, there are some scenarios that are just hard to account for. There will always be edge cases which are difficult to collect data for, either because they are dangerous and involve pedestrians or things that are challenging to measure accurately like the velocity of faraway objects. That’s where simulation really shines,” he told me in an interview for Singularity Hub.

While it isn’t ethical to have someone run unexpectedly into a street to train AI to handle such a situation, it’s significantly less problematic for an animated character inside a virtual world.

Industrial use of simulation has been around for decades, something Sholingar pointed out, but a convergence of improvements in computing power, the ability to model complex physics, and the development of the GPUs powering today’s graphics indicate we may be witnessing a turning point in the use of simulated worlds for AI training.

Graphics quality matters because of the way AI “sees” the world.

When a neural network processes image data, it’s converting each pixel’s color into a corresponding number. For black and white images, the number ranges from 0, which indicates a fully black pixel, up to 255, which is fully white, with numbers in between representing some variation of grey. For color images, the widely used RGB (red, green, blue) model can correspond to over 16 million possible colors. So as graphics rendering technology becomes ever more photorealistic, the distinction between pixels captured by real-world cameras and ones rendered in a game engine is falling away.

Simulation is also a powerful tool because it’s increasingly able to generate synthetic data for sensors beyond just cameras. While high-quality graphics are both appealing and familiar to human eyes, which is useful in training camera sensors, rendering engines are also able to generate radar and lidar data as well. Combining these synthetic datasets inside a simulation allows the algorithm to train using all the various types of sensors commonly used by AVs.

Due to their expertise in producing the GPUs needed to generate high-quality graphics, Nvidia have positioned themselves as leaders in the space. In 2021, the company launched Omniverse, a simulation platform capable of rendering high-quality synthetic sensor data and modeling real-world physics relevant to a variety of industries. Now, developers are using Omniverse to generate sensor data to train autonomous vehicles and other robotic systems.

In our discussion, Sholingar described some specific ways these types of simulations may be useful in accelerating development. The first involves the fact that with a bit of retraining, perception algorithms developed for one type of vehicle can be re-used for other types as well. However, because the new vehicle has a different sensor configuration, the algorithm will be seeing the world from a new point of view, which can reduce its performance.

“Let’s say you developed your AV on a sedan, and you need to go to an SUV. Well, to train it then someone must change all the sensors and remount them on an SUV. That process takes time, and it can be expensive. Synthetic data can help accelerate that kind of development,” Sholingar said.

Another area involves training algorithms to accurately detect faraway objects, especially in highway scenarios at high speeds. Since objects over 200 meters away often appear as just a few pixels and can be difficult for humans to label, there isn’t typically enough training data for them.

“For the far ranges, where it’s hard to annotate the data accurately, our goal was to augment those parts of the dataset,” Sholingar said. “In our experiment, using our simulation tools, we added more synthetic data and bounding boxes for cars at 300 meters and ran experiments to evaluate whether this improves our algorithm’s performance.”

According to Sholingar, these efforts allowed their algorithm to detect objects more accurately beyond 200 meters, something only made possible by their use of synthetic data.

While many of these developments are due to better visual fidelity and photorealism, Sholingar also stressed this is only one aspect of what makes capable real-world simulations.

“There is a tendency to get caught up in how beautiful the simulation looks since we see these visuals, and it’s very pleasing. What really matters is how the AI algorithms perceive these pixels. But beyond the appearance, there are at least two other major aspects which are crucial to mimicking reality in a simulation.”

First, engineers need to ensure there is enough representative content in the simulation. This is important because an AI must be able to detect a diversity of objects in the real world, including pedestrians with different colored clothes or cars with unusual shapes, like roof racks with bicycles or surfboards.

Second, simulations have to depict a wide range of pedestrian and vehicle behavior. Machine learning algorithms need to know how to handle scenarios where a pedestrian stops to look at their phone or pauses unexpectedly when crossing a street. Other vehicles can behave in unexpected ways too, like cutting in close or pausing to wave an oncoming vehicle forward.

“When we say realism in the context of simulation, it often ends up being associated only with the visual appearance part of it, but I usually try to look at all three of these aspects. If you can accurately represent the content, behavior, and appearance, then you can start moving in the direction of being realistic,” he said.

It also became clear in our conversation that while simulation will be an increasingly valuable tool for generating synthetic data, it isn’t going to replace real-world data collection and testing.

“We should think of simulation as an accelerator to what we do in the real world. It can save time and money and help us with a diversity of edge-case scenarios, but ultimately it is a tool to augment datasets collected from real-world data collection,” he said.

Beyond Omniverse, the wider industry of helping “things that move” develop autonomy is undergoing a shift toward simulation. Tesla announced they’re using similar technology to develop automation in Unreal Engine, while Canadian startup, Waabi, is taking a simulation-first approach to training their self-driving software. Microsoft, meanwhile, has experimented with a similar tool to train autonomous drones, although the project was recently discontinued.

While training and testing in the real world will remain a crucial part of developing autonomous systems, the continued improvement of physics and graphics engine technology means that virtual worlds may offer a low-stakes sandbox for machine learning algorithms to mature into functional tools that can power our autonomous future.

Image Credit: Nvidia

Kategorie: Transhumanismus

Make Music A Full Body Experience With A “Vibro-Tactile” Suit

Futurism - Enhanced Humans - 27 Září, 2018 - 17:09
SYNESTHETES

Tired: Listening to music.
Wired: Feeling the music.

A mind-bending new suit straps onto your torso, ankles and wrists, then uses actuators to translate audio into vivid vibration. The result: a new way for everyone to experience music, according to its creators. That’s especially exciting for people who have trouble hearing.

THE FEELIES

The Music: Not Impossible suit was created by design firm Not Impossible Labs and electronics manufacturing company Avnet. The suit can create sensations to go with pre-recorded music, or a “Vibrotactile DJ” can adjust the sensations in real time during a live music event.”

Billboard writer Andy Hermann tried the suit out, and it sounds like a trip.

“Sure enough, a pulse timed to a kickdrum throbs into my ankles and up through my legs,” he wrote. “Gradually, [the DJ] brings in other elements: the tap of a woodblock in my wrists, a bass line massaging my lower back, a harp tickling a melody across my chest.”

MORE ACCESSIBLE

To show the suit off, Not Impossible and Avnet organized a performance this past weekend by the band Greta Van Fleet at the Life is Beautiful Festival in Las Vegas. The company allowed attendees to don the suits. Mandy Harvey, a deaf musician who stole the show on America’s Got Talent last year, talked about what the performance meant to her in a video Avnet posted to Facebook.

“It was an unbelievable experience to have an entire audience group who are all experiencing the same thing at the same time,” she said. “For being a deaf person, showing up at a concert, that never happens. You’re always excluded.”

READ MORE: Not Impossible Labs, Zappos Hope to Make Concerts More Accessible for the Deaf — and Cooler for Everyone [Billboard]

More on accessible design: New Tech Allows Deaf People To Sense Sounds

The post Make Music A Full Body Experience With A “Vibro-Tactile” Suit appeared first on Futurism.

Kategorie: Transhumanismus

“Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch

Futurism - Enhanced Humans - 20 Září, 2018 - 21:37
IN THE FEELS

Today’s prosthetics can give people with missing limbs the ability to do almost anything — run marathons, climb mountains, you name it. But when it comes to letting those people feel what they could with a natural limb, the devices, however mechanically sophisticated, invariably fall short.

Now researchers have created a “synthetic skin” with a sense of touch that not only matches the sensitivity of natural skin, but in some cases even exceeds it. Now the only challenge is getting that information back into the wearer’s nervous system.

UNDER PRESSURE

When something presses against your skin, your nerves receive and transmit that pressure to the brain in the form of electrical signals.

To mimic that biological process, the researchers suspended a flexible polymer, dusted with magnetic particles, over a magnetic sensor. The effect is like a drum: Applying even the tiniest amount of pressure to the membrane causes the magnetic particles to move closer to the sensors, and they transmit this movement electronically.

The research, which could open the door to super-sensitive prosthetics, was published Wednesday in the journal Science Robotics.

SPIDEY SENSE TINGLING

Tests shows that the skin can sense extremely subtle pressure, such as a blowing breeze, dripping water, or crawling ants. In some cases, the synthetic skin responded to pressures so gentle that natural human skin wouldn’t be able to detect them.

While the sensing ability of this synthetic skin is remarkable, the team’s research doesn’t address how to transmit the signals to the human brain. Other scientists are working on that, though, so eventually this synthetic skin could give prosthetic wearers the ability to feel forces even their biological-limbed friends can’t detect.

READ MORE: A Skin-Inspired Tactile Sensor for Smart Prosthetics [Science Robotics]

More on synthetic skin: Electronic Skin Lets Amputees Feel Pain Through Their Prosthetics

The post “Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch appeared first on Futurism.

Kategorie: Transhumanismus

People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns.

Futurism - Enhanced Humans - 19 Září, 2018 - 21:56
BRAIN BOOST

There’s a gadget that some say can help alleviate depression and enhance creativity. All you have to do is place a pair of electrodes on your scalp and the device will deliver electrical current to your brain. It’s readily available on Amazon or you can even make your own.

But in a new paper published this week in the Creativity Research Journal, psychologists at Georgetown University warned that the practice is spreading before we have a good understanding of its health effects, especially since consumers are already buying and building unregulated devices to shock them. They also cautioned that the technique, which scientists call transcranial electrical stimulation (tES), could have adverse effects on the brains of young people.

“There are multiple potential concerns with DIY-ers self-administering electric current to their brains, but this use of tES may be inevitable,” said co-author Adam Green in a press release. “And, certainly, anytime there is risk of harm with a technology, the scariest risks are those associated with kids and the developing brain”

SHOCK JOCK

Yes, there’s evidence that tES can help patients with depression, anxiety, Parkinson’s disease, and other serious conditions, the Georgetown researchers acknowledge.

But that’s only when it’s administered by a trained health care provider. When administering tES at home, people might ignore safety directions, they wrote, or their home-brewed devices could deliver unsafe amounts of current. And because it’s not yet clear what effects of tES might be on the still-developing brains of young people, the psychologists advise teachers and parents to resist the temptation to use the devices to encourage creativity among children.

The takeaway: tES is likely here to stay, and it may provide real benefits. But for everyone’s sake, consumer-oriented tES devices should be regulated to protect users.

READ MORE: Use of electrical brain stimulation to foster creativity has sweeping implications [Eurekalert]

More on transcranial electrical stimulation: DARPA’s New Brain Device Increases Learning Speed by 40%

The post People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns. appeared first on Futurism.

Kategorie: Transhumanismus

Military Pilots Can Control Three Jets at Once via a Neural Implant

Futurism - Enhanced Humans - 19 Září, 2018 - 16:25
MIND CONTROL

The military is making it easier than ever for soldiers to distance themselves from the consequences of war. When drone warfare emerged, pilots could, for the first time, sit in an office in the U.S. and drop bombs in the Middle East.

Now, one pilot can do it all, just using their mind — no hands required.

Earlier this month, DARPA, the military’s research division, unveiled a project that it had been working on since 2015: technology that grants one person the ability to pilot multiple planes and drones with their mind.

“As of today, signals from the brain can be used to command and control … not just one aircraft but three simultaneous types of aircraft,” Justin Sanchez, director of DARPA’s Biological Technologies Office, said, according to Defense One.

THE SINGULARITY

Sanchez may have unveiled this research effort at a “Trajectory of Neurotechnology” session at DARPA’s 60th anniversary event, but his team has been making steady progress for years. Back in 2016, a volunteer equipped with a brain-computer interface (BCI) was able to pilot an aircraft in a flight simulator while keeping two other planes in formation — all using just his thoughts, a spokesperson from DARPA’s Biological Technologies Office told Futurism.

In 2017, Copeland was able to steer a plane through another simulation, this time receiving haptic feedback — if the plane needed to be steered in a certain direction, Copeland’s neural implant would create a tingling sensation in his hands.

NOT QUITE MAGNETO

There’s a catch. The DARPA spokesperson told Futurism that because this BCI makes use of electrodes implanted in and on the brain’s sensory and motor cortices, experimentation has been limited to volunteers with varying degrees of paralysis. That is: the people steering these simulated planes already had brain electrodes, or at least already had reason to undergo surgery.

To try and figure out how to make this technology more accessible and not require surgical placement of a metal probe into people’s brains, DARPA recently launched the NExt-Generation Nonsurgical Neurotechnology (N3) program. The plan is to make a device with similar capabilities, but it’ll look more like an EEG cap that the pilot can take off once a mission is done.

“The envisioned N3 system would be a tool that the user could wield for the duration of a task or mission, then put aside,” said Al Emondi, head of N3, according to the spokesperson. “I don’t like comparisons to a joystick or keyboard because they don’t reflect the full potential of N3 technology, but they’re useful for conveying the basic notion of an interface with computers.”

READ MORE: It’s Now Possible To Telepathically Communicate with a Drone Swarm [Defense One]

More on DARPA research: DARPA Is Funding Research Into AI That Can Explain What It’s “Thinking”

The post Military Pilots Can Control Three Jets at Once via a Neural Implant appeared first on Futurism.

Kategorie: Transhumanismus

Lab-Grown Bladders Can Save People From a Lifetime of Dialysis

Futurism - Enhanced Humans - 12 Září, 2018 - 22:54
ONE IN A MILLION TEN

Today, about 10 people on Earth have bladders they weren’t born with. No, they didn’t receive bladder transplants — doctors grew these folks new bladders using the recipients’ own cells.

On Tuesday, the BBC published a report on the still-nascent procedure of transplanting lab-grown bladders. In it, the publication talks to Luke Massella, who underwent the procedure more than a decade ago. Massella was born with spina bifida, which carries with it a risk of damage to the bladder and urinary tract. Now, he lives a normal life, he told the BBC.

“I was kind of facing the possibility I might have to do dialysis [blood purification via machine] for the rest of my life,” he said. “I wouldn’t be able to play sports, and have the normal kid life with my brother.”

All that changed after Anthony Atala, a surgeon at Boston Children’s Hospital, decided he was going to grow a new bladder for Massella.

ONE NEW BLADDER, COMING UP!

To do that, Atala first removed a small piece of Massella’s own bladder. He then removed cells from this portion of bladder and multiplied them in a petri dish. Once he had enough cells, he coated a scaffold with the cells and placed the whole thing in a temperature controlled, high oxygen environment. After a few weeks, the lab-created bladder was ready for transplantation into Massella.

“So it was pretty much like getting a bladder transplant, but from my own cells, so you don’t have to deal with rejection,” said Massella.

The number of people with lab-grown bladders might still be low enough to count on your fingers, but researchers are making huge advances in growing everything from organs to skin in the lab. Eventually, we might reach a point when we can replace any body part we need to with a perfect biological match that we built ourselves.

READ MORE: “A New Bladder Made From My Cells Gave Me My Life Back” [BBC]

More on growing organs: The FDA Wants to Expedite Approval of Regenerative Organ Therapies

The post Lab-Grown Bladders Can Save People From a Lifetime of Dialysis appeared first on Futurism.

Kategorie: Transhumanismus
Syndikovat obsah