Viry a Červi

You *did* encrypt that USB drive… didn’t you? [Chet Chat Podcast 265]

Sophos Naked Security - 11 Listopad, 2017 - 17:35
Here's the latest episode of the Chet Chat podcast...enjoy.

Simple exploit can be used to disable Brother printers remotely

Sophos Naked Security - 11 Listopad, 2017 - 17:15
The only people who should have access to your printer's web interface are the people who need it

Manic miners, hideous hackers, frightful flaws, vibrating mock cock app shock – and more

The Register - Anti-Virus - 11 Listopad, 2017 - 09:34
It's your weekly security news bytes

Roundup  Phew, we made it to the weekend. Let's take a look at everything that went down in IT security beyond what we've already covered this week.…

Kategorie: Viry a Červi

Parity's $280m Ethereum wallet freeze was no accident: It was a HACK, claims angry upstart

The Register - Anti-Virus - 10 Listopad, 2017 - 23:40
And we have evidence to prove it, says biz stiffed out of $1m

A crypto-currency collector who was locked out of his $1m Ethereum multi-signature wallet this week by a catastrophic bug in Parity's software has claimed the blunder was not an accident – it was "deliberate and fraudulent."…

Kategorie: Viry a Červi

How did someone hijack your Gmail? Phishing, keylogger or password reuse, we're guessing

The Register - Anti-Virus - 10 Listopad, 2017 - 20:50
If you run a website with user accounts, take a look at this research, ta

Google has teamed up with computer scientists at the University of California, Berkeley, to find out how exactly hijackers take over its users' accounts.…

Kategorie: Viry a Červi

Microsoft president says the world needs a digital Geneva Convention

The Register - Anti-Virus - 10 Listopad, 2017 - 18:57
Mr Smith goes to Switzerland

Microsoft president Brad Smith appeared before the UN in Geneva to talk about the growing problem of nation-state cyber attacks on Thursday.…

Kategorie: Viry a Červi

The teen who bought a car bomb on the Dark Web

Sophos Naked Security - 10 Listopad, 2017 - 18:50
He was arrested after accepting a package delivered to his home address

AutoIt Scripting Used By Overlay Malware to Bypass AV Detection

VirusList.com - 10 Listopad, 2017 - 18:00
IBM’s X-Force Research team reports hackers attacking Brazilian banks are using the Windows scripting tool called AutoIt to reduces the likelihood of antivirus software detection.
Kategorie: Viry a Červi

Threatpost News Wrap Podcast for Nov. 10

VirusList.com - 10 Listopad, 2017 - 15:00
Threatpost editors Mike Mimoso and Tom Spring discuss the week's information security news.
Kategorie: Viry a Červi

What do Microsoft’s highly secure Windows 10 device standards tell us?

Sophos Naked Security - 10 Listopad, 2017 - 14:01
Microsoft’s hardware spec could end up being a two-minute read with two-decade implications

WikiLeaks drama alert: CIA forged digital certs imitating Kaspersky Lab

The Register - Anti-Virus - 10 Listopad, 2017 - 13:31
Vault 8 release says spooks used disguise to siphon off data

The CIA wrote code to impersonate Kaspersky Labs in order to more easily siphon off sensitive data from hack targets, according to leaked intel released by Wikileaks on Thursday.…

Kategorie: Viry a Červi

How Twitter outrage hatches in tiny fringe groups on 4chan and Reddit

Sophos Naked Security - 10 Listopad, 2017 - 12:30
Communities within 4chan and Reddit are veritable hatcheries for Twitter-borne fakery

IT threat evolution Q3 2017. Statistics

Kaspersky Securelist - 10 Listopad, 2017 - 11:45

Q3 figures

According to KSN data, Kaspersky Lab solutions detected and repelled 277,646,376 malicious attacks from online resources located in 185 countries all over the world.

72,012,219 unique URLs were recognized as malicious by web antivirus components.

Attempted infections by malware that aims to steal money via online access to bank accounts were registered on 204,388 user computers.

Crypto ransomware attacks were blocked on 186283 computers of unique users.

Kaspersky Lab’s file antivirus detected a total of 198,228,428 unique malicious and potentially unwanted objects.

Kaspersky Lab mobile security products detected:

  • 1,598,196 malicious installation packages;
  • 19,748 mobile banking Trojans (installation packages);
  • 108,073 mobile ransomware Trojans (installation packages).
Mobile threats Q3 events The spread of the Asacub banker

In the third quarter, we continued to monitor the activity of the mobile banking Trojan Trojan-Banker.AndroidOS.Asacub that actively spread via SMS spam. Q3 saw cybercriminals carry out a major campaign to distribute the Trojan, resulting in a tripling of the number of users attacked. Asacub activity peaked in July, after which there was a decline in the number of attacks: in September we registered almost three times fewer attacked users than in July.

Number of unique users attacked by Trojan-Banker.AndroidOS.Asacub in Q2 and Q3 2017

New capabilities of mobile banking Trojans

Q3 2017 saw two significant events in the world of mobile banking Trojans.

Firstly, the family of mobile banking Trojans Svpeng has acquired the new modification Trojan-Banker.AndroidOS.Svpeng.ae capable of granting all the necessary rights to itself and stealing data from other applications. To do this, it just needs to persuade the user to allow the Trojan to utilize special functions designed for people with disabilities. As a result, the Trojan can intercept text that a user is entering, steal text messages and even prevent itself from being removed.

Interestingly, in August we discovered yet another modification of Svpeng that uses special features. Only, this time the Trojan was not banking related – instead of stealing data, it encrypts all the files on a device and demands a ransom in bitcoins.

Trojan-Banker.AndroidOS.Svpeng.ag. window containing ransom demand

Secondly, the FakeToken family of mobile banking Trojans has expanded the list of apps it attacks. If previously representatives of this family mostly overlaid banking and some Google apps (e.g. Google Play Store) with a phishing window, it is now also overlaying apps used to book taxis, air tickets and hotels. The aim of the Trojan is to harvest data from bank cards.

The growth of WAP billing subscriptions

In the third quarter of 2017, we continued to monitor the increased activity of Trojans designed to steal users’ money via subscriptions. To recap, these are Trojans capable of visiting sites that allow users to pay for services by deducting money from their mobile phone accounts. These Trojans can usually click buttons on such sites using special JS files, and thus make payments without the user’s knowledge.

Our Top 20 most popular Trojan programs in Q3 2017 included three malware samples that attack WAP subscriptions. They are Trojan-Dropper.AndroidOS.Agent.hb and Trojan.AndroidOS.Loapi.b in fourth and fifth, and Trojan-Clicker.AndroidOS.Ubsod.b in seventh place.

Mobile threat statistics

In the third quarter of 2017, Kaspersky Lab detected 1,598,196 malicious installation packages, which is 1.2 times more than in the previous quarter.

Number of detected malicious installation packages (Q4 2016 – Q3 2017)

Distribution of mobile malware by type

Distribution of new mobile malware by type (Q2 and Q3 2017)

RiskTool (53.44%) demonstrated the highest growth in Q3 2017, with its share increasing by 12.93 percentage points (p.p.). The majority of all installation packages discovered belonged to the RiskTool.AndroidOS.Skymobi family.

Trojan-Dropper malware (10.97%) came second in terms of growth rate: its contribution increased by 6.29 p.p. Most of the installation packages are detected as Trojan-Dropper.AndroidOS.Agent.hb.

The share of Trojan-Ransom programs, which was first in terms of the growth rate in the first quarter of 2017, continued to fall and accounted for 6.69% in Q3, which is 8.4 p.p. less than the previous quarter. The percentage of Trojan-SMS malware also fell considerably to 2.62% – almost 4 p.p. less than in Q2.

In Q3, Trojan-Clicker malware broke into this rating after its contribution increased from 0.29% to 1.41% in the space of three months.

TOP 20 mobile malware programs

Please note that this rating of malicious programs does not include potentially dangerous or unwanted programs such as RiskTool or adware.

Verdict % of attacked users* 1 DangerousObject.Multi.Generic 67.14 2 Trojan.AndroidOS.Boogr.gsh 7.52 3 Trojan.AndroidOS.Hiddad.ax 4.56 4 Trojan-Dropper.AndroidOS.Agent.hb 2.96 5 Trojan.AndroidOS.Loapi.b 2.91 6 Trojan-Dropper.AndroidOS.Hqwar.i 2.59 7 Trojan-Clicker.AndroidOS.Ubsod.b 2.20 8 Backdoor.AndroidOS.Ztorg.c 2.09 9 Trojan.AndroidOS.Agent.gp 2.05 10 Trojan.AndroidOS.Sivu.c 1.98 11 Trojan.AndroidOS.Hiddapp.u 1.87 12 Backdoor.AndroidOS.Ztorg.a 1.68 13 Trojan.AndroidOS.Agent.ou 1.63 14 Trojan.AndroidOS.Triada.dl 1.57 15 Trojan-Ransom.AndroidOS.Zebt.a 1.57 16 Trojan-Dropper.AndroidOS.Hqwar.gen 1.53 17 Trojan.AndroidOS.Hiddad.an 1.48 18 Trojan.AndroidOS.Hiddad.ci 1.47 19 Trojan-Banker.AndroidOS.Asacub.ar 1.41 20 Trojan.AndroidOS.Agent.eb 1.29

* Percentage of unique users attacked by the malware in question, relative to all users of Kaspersky Lab’s mobile security product that were attacked.

First place was occupied by DangerousObject.Multi.Generic (67.14%), the verdict used for malicious programs detected using cloud technologies. This is basically how the very latest malware is detected.

As in the previous quarter, Trojan.AndroidOS.Boogr.gsh (7.52%) came second. This verdict is issued for files recognized as malicious by our system based on machine learning.

Trojan.AndroidOS.Hiddad.an (4.56%) was third. The main purpose of this Trojan is to open and click advertising links received from the C&C. The Trojan requests administrator rights to prevent its removal.

Trojan-Dropper.AndroidOS.Agent.hb (2.96%) climbed from sixth in Q2 to fourth this quarter. This Trojan decrypts and runs another Trojan – a representative of the Loaipi family. One of them –Trojan.AndroidOS.Loapi.b – came fifth in this quarter’s Top 20. This is a complex modular Trojan whose main malicious component needs to be downloaded from the cybercriminals’ server. We can assume that Trojan.AndroidOS.Loapi.b is designed to steal money via paid subscriptions.

Trojan-Dropper.AndroidOS.Hqwar.i (3.59%), the verdict used for Trojans protected by a certain packer/obfuscator, fell from fourth to sixth. In most cases, this name indicates representatives of the FakeToken and Svpeng mobile banking families.

In seventh was Trojan-Clicker.AndroidOS.Ubsod.b, a small basic Trojan that receives links from a C&C and opens them. We wrote about this family in more detail in our review of Trojans that steal money using WAP subscriptions.

Trojan Backdoor.AndroidOS.Ztorg.c came eighth. This is one of the most active advertising Trojans that uses superuser rights. In the third quarter of 2017, our Top 20 included eight Trojans that try to obtain or use root rights and which make use of advertising as their main means of monetization. Their goal is to deliver ads to the user more aggressively, applying (among other methods) hidden installation of new advertising programs. At the same time, superuser privileges help them ‘hide’ in the system folder, making it very difficult to remove them. It’s worth noting that the quantity of this type of malware in the Top 20 has been decreasing (in Q1 2017, there were 14 of these Trojans in the rating, while in Q2 the number was 11).

Trojan.AndroidOS.Agent.gp (2.05%), which steals money from users making calls to premium numbers, rose from fifteenth to ninth. Due to its use of administrator rights, it resists attempts to remove it from an infected device.

Occupying fifteenth this quarter was Trojan-Ransom.AndroidOS.Zebt.a, the first ransom Trojan in this Top 20 rating in 2017. This is a fairly simple Trojan whose main goal is to block the device with its window and demand a ransom. Zebt.a tends to attack users in Europe and Mexico.

Trojan.AndroidOS.Hiddad.an (1.48%) fell to sixteenth after occupying second and third in the previous two quarters. This piece of malware imitates various popular games or programs. Interestingly, once run, it downloads and installs the application it imitated. In this case, the Trojan requests administrator rights to withstand removal. The main purpose of Trojan.AndroidOS.Hiddad.an is the aggressive display of adverts. Its main ‘audience’ is in Russia.

The geography of mobile threats

The geography of attempted mobile malware infections in Q3 2017 (percentage of all users attacked)

Top 10 countries attacked by mobile malware (ranked by percentage of users attacked):

Country* % of attacked users** 1 Iran 35.12 2 Bangladesh 28.30 3 China 27.38 4 Côte d’Ivoire 26.22 5 Algeria 24.78 6 Nigeria 23.76 7 Indonesia 22.29 8 India 21.91 9 Nepal 20.78 10 Kenya 20.43

* We eliminated countries from this rating where the number of users of Kaspersky Lab’s mobile security product is relatively low (under 10,000). 
** Percentage of unique users attacked in each country relative to all users of Kaspersky Lab’s mobile security product in the country.

For the third quarter in a row Iran was the country with the highest percentage of users attacked by mobile malware – 35.12%. Bangladesh came second, with 28.3% of users there encountering a mobile threat at least once during Q3. China (27.38%) followed in third.

Russia (8.68%) came 35th this quarter (vs 26th place in Q2), France (4.9%) was 59th, the US (3.8%) 67th, Italy (5.3%) 56th, Germany (2.9%) 79th, and the UK (3.4%) 72nd.

The safest countries were Georgia (2.2%), Denmark (1.9%), and Japan (0.8%).

Mobile banking Trojans

Over the reporting period we detected 19,748 installation packages for mobile banking Trojans, which is 1.4 times less than in Q2 2017.

Number of installation packages for mobile banking Trojans detected by Kaspersky Lab solutions (Q4 2016 – Q3 2017)

Banker.AndroidOS.Asacub.ar became the most popular mobile banking Trojan in Q3, replacing the long-term leader Trojan-Banker.AndroidOS.Svpeng.q. These mobile banking Trojans use phishing windows to steal credit card data and logins and passwords for online banking accounts. In addition, they steal money via SMS services, including mobile banking.

Geography of mobile banking threats in Q3 2017 (percentage of all users attacked)

Top 10 countries attacked by mobile banker Trojans (ranked by percentage of users attacked):

Country* % of attacked users** 1 Russia 1.20 2 Uzbekistan 0.40 3 Kazakhstan 0.36 4 Tajikistan 0.35 5 Turkey 0.34 6 Moldova 0.31 7 Ukraine 0.29 8 Kyrgyzstan 0.27 9 Belarus 0.26 10 Latvia 0.23

* We eliminated countries from this rating where the number of users of Kaspersky Lab’s mobile security product is relatively low (under 10,000).
** Percentage of unique users in each country attacked by mobile banker Trojans, relative to all users of Kaspersky Lab’s mobile security product in the country.

In Q3 2017, the Top 10 countries attacked by mobile banker Trojans saw little change: Russia (1.2%) topped the ranking again. In second and third places were Uzbekistan (0.4%) and Kazakhstan (0.36%), which came fifth and tenth respectively in the previous quarter. In these countries the Faketoken.z, Tiny.b and Svpeng.y families were the most widespread threats.

Of particular interest is the fact that Australia, a long-term resident at the top end of this rating, didn’t make it into our Top 10 this quarter. This was due to a decrease in activity by the Trojan-Banker.AndroidOS.Acecard and Trojan-Banker.AndroidOS.Marcher mobile banking families.

Mobile ransomware

In Q3 2017, we detected 108,073 mobile Trojan-Ransomware installation packages, which is almost half as much as in the previous quarter.

Number of mobile Trojan-Ransomware installation packages detected by Kaspersky Lab (Q3 2016 – Q3 2017)

In our report for Q2, we wrote that in the first half of 2017, we had discovered more mobile ransomware installation packages than in any other period. The reason was the Trojan-Ransom.AndroidOS.Congur family. However, in the third quarter of this year we observed a decline in this family’s activity.

Trojan-Ransom.AndroidOS.Zebt.a became the most popular mobile Trojan-Ransomware in Q3, accounting for more than a third of users attacked by mobile ransomware. Second came Trojan-Ransom.AndroidOS.Svpeng.ab. Meanwhile, Trojan-Ransom.AndroidOS.Fusob.h, which topped the rating for several quarters in a row, was only third in Q3 2017.

Geography of mobile Trojan-Ransomware in Q3 2017 (percentage of all users attacked)

Top 10 countries attacked by mobile Trojan-Ransomware (ranked by percentage of users attacked):

1 US 1.03% 2 Mexico 0.91% 3 Belgium 0.85% 4 Kazakhstan 0.79% 5 Romania 0.70% 6 Italy 0.50% 7 China 0.49% 8 Poland 0.49% 9 Austria 0.45% 10 Spain 0.33%

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000.
** Percentage of unique users in each country attacked by mobile Trojan-Ransomware, relative to all users of Kaspersky Lab’s mobile security product in the country.

The US (1.03%) again topped the rating of countries attacked most by mobile Trojan-Ransomware; the most widespread family in the country was Trojan-Ransom.AndroidOS.Svpeng. These Trojans appeared in 2014 as a modification of the Trojan-Banker.AndroidOS.Svpeng mobile banking family. They demand a ransom of about $500 from victims to unblock their devices.

In Mexico (0.91%), which came second in Q3 2017, most mobile ransomware attacks involved Trojan-Ransom.AndroidOS.Zebt.a. Belgium (0.85%) came third, with Zebt.a the main threat to users there too.

Vulnerable apps exploited by cybercriminals

Q3 2017 saw continued growth in the number of attacks launched against users involving malicious Microsoft Office documents. We noted the emergence of a large number of combined documents containing an exploit as well as a phishing message – in case the embedded exploit fails.

Although two new Microsoft Office vulnerabilities, CVE-2017-8570 and CVE-2017-8759, have emerged, cybercriminals have continued to exploit CVE-2017-0199, a logical vulnerability in processing HTA objects that was discovered in March 2017. Kaspersky Lab statistics show that attacks against 65% users in Q3 exploited CVE-2017-0199, and less than 1% exploited CVE-2017-8570 or CVE-2017-8759. The overall share of exploits for Microsoft Office was 27.8%.

There were no large network attacks (such as WannaCry or ExPetr) launched in Q3 using vulnerabilities patched by the MS17-010 update. However, according to KSN data, there was major growth throughout the quarter in the number of attempted exploitations of these vulnerabilities that were blocked by our Intrusion Detection System component. Unsurprisingly, the most popular exploits have been EternalBlue and its modifications, which use an SMB protocol vulnerability; however, KL statistics show that EternalRomance, EternalChampion and an exploit for the CVE-2017-7269 vulnerability in IIS web servers have also been actively used by cybercriminals. EternalBlue, however, accounts for millions of blocked attempted attacks per month, while the numbers for other exploits are much lower.

Distribution of exploits used in attacks by type of application attacked, Q3 2017

The distribution of exploits by the type of attacked application this quarter was practically the same as in Q2. First place is still occupied by exploits targeting browsers and browser components with a share of 35.0% (a decline of 4 p.p. compared to Q2.) The proportion of exploits targeting Android vulnerabilities (22.7%) was almost identical to that in Q2, placing this type of attacked application once again in third behind Office vulnerabilities.

Online threats (Web-based attacks)

These statistics are based on detection verdicts returned by the web antivirus module that protects users at the moment when malicious objects are downloaded from a malicious/infected web page. Malicious sites are specifically created by cybercriminals; infected web resources include those whose content is created by users (e.g. forums), as well as legitimate resources.

Online threats in the banking sector

These statistics are based on detection verdicts of Kaspersky Lab products, received from users of Kaspersky Lab products who have consented to provide their statistical data. Beginning from the first quarter of 2017 these statistics include malicious programs for ATMs and POS terminals, but do not include mobile threats.

In Q3 2017, Kaspersky Lab solutions blocked attempts to launch one or more malicious programs capable of stealing money via online banking on 204,388 computers.

Number of users attacked by financial malware, Q3 2017

Geography of attacks

To evaluate and compare the risk of being infected by banking Trojans and ATM and POS-malware worldwide, we calculate the percentage of Kaspersky Lab product users in the country who encountered this type of threat during the reporting period, relative to all users of our products in that country.

Geography of banking malware attacks in Q3 2017 (percentage of all users attacked)

TOP 10 countries attacked by mobile banker Trojans (ranked by percentage of users attacked)

Country* % of users attacked** 1 Togo 2.30 2 China 1.91 3 Taiwan 1.65 4 Indonesia 1.58 5 South Korea 1.56 6 Germany 1.53 7 United Arab Emirates 1.52 8 Lebanon 1.48 9 Libya 1.43 10 Jordan 1.33

These statistics are based on detection verdicts returned by the antivirus module, received from users of Kaspersky Lab products who have consented to provide their statistical data.
* We excluded those countries in which the number of Kaspersky Lab product users is relatively small (under 10,000).
** Unique users whose computers have been targeted by banking Trojan malware attacks as a percentage of all unique users of Kaspersky Lab products in the country.

TOP 10 banking malware families

The table below shows the Top 10 malware families used in Q3 2017 to attack online banking users (in terms of percentage of users attacked):

Name* % of attacked users** 1 Trojan-Spy.Win32.Zbot 27.9 2 Trojan.Win32.Nymaim 20.4 3 Trojan.Win32.Neurevt 10.0 4 Trickster 9.5 5 SpyEye 7.5 6 Caphaw 6.3 7 Trojan-Banker.Win32.Gozi 2.0 8 Shiz 1.8 9 ZAccess 1.6 10 NeutrinoPOS 1.6

* The detection verdicts of Kaspersky Lab products, received from users of Kaspersky Lab products who have consented to provide their statistical data.
** Unique users whose computers have been targeted by the malware in question as a percentage of all users attacked by financial malware.

The malware families Dridex and Tinba lost their places in this quarter’s Top 10. One of their former positions was occupied by the Trickster bot (accounting for 9.5% of attacked users), also known as TrickBot, a descendant of the now defunct Dyre banker. There was a small change in the leading three malicious families. First and second places are still occupied by Trojan-Spy.Win32.Zbot (27.9%) and Trojan.Win32.Nymaim (20.4%) respectively, while third place is now occupied by Trojan.Win32.Neurevt (10%) whose share grew by nearly 4 p.p.

Cryptoware programs Q3 highlights Crysis rises from the dead

In our Q2 report we wrote that the cybercriminals behind the Crysis ransomware cryptor halted distribution of the malware and published the secret keys needed to decrypt files. This took place in May 2017, and all propagation of the ransomware was stopped completely at that time.

However, nearly three months later, in mid-August, we discovered that this Trojan had come back from the dead and had set out on a new campaign of active propagation. The email addresses used by the blackmailers were different from those used in earlier samples of Crysis. A detailed analysis revealed that the new samples of the Trojan were completely identical to the old ones apart from just one thing – the public master keys were new. Everything else was the same, including the compilation timestamp in the PE header and, more interestingly, the labels that the Trojan leaves in the service area at the end of each encrypted file. Closer scrutiny of the samples suggests that the new distributors of the malware didn’t have the source code, so they just took its old body and used a HEX editor to change the key and the contact email.

The above suggests that this piece of ‘zombie’ malware is being spread by a different group of malicious actors rather than its original developer who disclosed all the private keys in May.

Surge in Cryrar attacks

The Cryrar cryptor (aka ACCDFISA) is a veteran among the ransomware Trojans that are currently being spread. It emerged way back in 2012 and has been active ever since. The cryptor is written in PureBasic and uses a legitimate executable RAR archiver file to place the victim’s files in password-encrypted RAR-sfx archives.

In the first week of September 2017 we recorded a dramatic rise in the number of attempted infections with Cryrar – a surge never seen before or since. The malicious actors used the following approach: they crack the password to RDP by brute force, get authentication on the victim’s system using the remote access protocol and manually launch the Trojan’s installation file. The latter, in turn, installs the cryptor’s body and the components it requires (including the renamed RAR.EXE file), and then automatically launches the cryptor.

According to KSN data, this wave of attacks primarily targeted Vietnam, China, the Philippines and Brazil.

Master key to original versions of Petya/Mischa/GoldenEye published

In July 2017, the authors of the Petya Trojan published their master key, which can be used to decrypt the Salsa keys required to decrypt MFT and unblock access to systems affected by Petya/Mischa or GoldenEye.

This happened shortly after the ExPetr epidemic which used part of the GoldenEye code. This suggests that the authors of Petya/Mischa/GoldenEye did so in an attempt to distance themselves from the ExPetr attack and the outcry that it caused.

Unfortunately, this master key won’t help those affected by ExPetr, as its creators didn’t include the option of restoring a Salsa key to decrypt MFT.

The number of new modifications

In Q3 2017, we identified five new ransomware families in this classification. It’s worth noting here that this number doesn’t include all the Trojans that weren’t assigned their own ‘personal’ verdict. Each quarter, dozens of these malicious programs emerge, though they either have so few distinctive characteristics or occur so rarely that they and the hundreds of others like them remain nameless, and are detected with generic verdicts.

Number of newly created cryptor modifications, Q3 2016 – Q3 2017

The number of new cryptor modifications continues to decline compared to previous quarters. This could be a temporary trend, or could indicate that cybercriminals are gradually losing their interest in cryptors as a means of making money, and are switching over to other types of malware.

The number of users attacked by ransomware

July was the month with the lowest ransomware activity. From July to September, the number of ransomware attacks rose, though it remained lower than May and June when two massive epidemics (WannaCry and ExPetr) struck.

Number of unique users attacked by Trojan-Ransom cryptor malware (Q3 2017)

The geography of attacks

Top 10 countries attacked by cryptors Country* % of users attacked by cryptors** 1 Myanmar 0.95% 2 Vietnam 0.92% 3 Indonesia 0.69% 4 Germany 0.62% 5 China 0.58% 6 Russia 0.51% 7 Philippines 0.50% 8 Venezuela 0.50% 9 Cambodia 0.50% 10 Austria 0.49%

* We excluded those countries where the number of Kaspersky Lab product users is relatively small (under 50,000)
** Unique users whose computers have been targeted by ransomware as a percentage of all unique users of Kaspersky Lab products in the country.

Most of the countries in this Top 10 are from Asia, including Myanmar (0.95%), a newcomer to the Top 10 that swept into first place in Q3. Vietnam (0.92%) came second, moving up two places from Q2, while China (0.58%) rose one place to fifth.

Brazil, Italy and Japan were the leaders in Q2, but in Q3 they failed to make it into the Top 10. Europe is represented by Germany (0.62%) and Austria (0.49%).

Russia, in tenth the previous quarter, ended Q3 in sixth place.

Top 10 most widespread cryptor families Name Verdict* % of attacked users** 1 WannaCry Trojan-Ransom.Win32.Wanna 16.78% 2 Crypton Trojan-Ransom.Win32.Cryptoff 14.41% 3 Purgen/GlobeImposter Trojan-Ransom.Win32.Purgen 6.90% 4 Locky Trojan-Ransom.Win32.Locky 6.78% 5 Cerber Trojan-Ransom.Win32.Zerber 4.30% 6 Cryrar/ACCDFISA Trojan-Ransom.Win32.Cryrar 3.99% 7 Shade Trojan-Ransom.Win32.Shade 2.69% 8 Spora Trojan-Ransom.Win32.Spora 1.87% 9 (generic verdict) Trojan-Ransom.Win32.Gen 1.77% 10 (generic verdict) Trojan-Ransom.Win32.CryFile 1.27%

* These statistics are based on detection verdicts received from users of Kaspersky Lab products who have consented to provide their statistical data.
** Unique users whose computers have been targeted by a specific Trojan-Ransom family as a percentage of all users of Kaspersky Lab products attacked by Trojan-Ransom malware.

Wannacry (16.78%) tops the rating for Q3, and the odds are that it’s set to remain there: the worm has been propagating uncontrollably, and there are still huge numbers of computers across the globe with the unpatched vulnerability that Wannacry exploits.

Crypton (14.41%) came second. This cryptor emerged in spring 2016 and has undergone many modifications since. It has also been given multiple names: CryptON, JuicyLemon, PizzaCrypts, Nemesis, x3m, Cry9, Cry128, Cry36.

The cryptor Purgen (6.90%) rounds off the top three after rising from ninth. The rest of the rating is populated by ‘old timers’ – the Trojans Locky, Cerber, Cryrar, Shade, and Spora.

The Jaff cryptor appeared in the spring of 2017, going straight into fourth place in the Q2 rating, and then stopped spreading just as suddenly.

Top 10 countries where online resources are seeded with malware

The following statistics are based on the physical location of the online resources used in attacks and blocked by our antivirus components (web pages containing redirects to exploits, sites containing exploits and other malware, botnet command centers, etc.). Any unique host could be the source of one or more web attacks. In order to determine the geographical source of web-based attacks, domain names are matched against their actual domain IP addresses, and then the geographical location of a specific IP address (GEOIP) is established.

In the third quarter of 2017, Kaspersky Lab solutions blocked 277,646,376 attacks launched from web resources located in 185 countries around the world. 72,012,219 unique URLs were recognized as malicious by web antivirus components.

Distribution of web attack sources by country, Q3 2017

In Q3 2017, the US (3.86%) was home to most sources of web attacks. The Netherlands (25.22%) remained in second place, while Germany moved up from fifth to third. Finland and Singapore dropped out of the top five and were replaced by Ireland (1.36%) and Ukraine (1.36%).

Countries where users faced the greatest risk of online infection

In order to assess the risk of online infection faced by users in different countries, we calculated the percentage of Kaspersky Lab users in each country who encountered detection verdicts on their machines during the quarter. The resulting data provides an indication of the aggressiveness of the environment in which computers work in different countries.

This rating only includes attacks by malicious programs that fall under the Malware class. The rating does not include web antivirus module detections of potentially dangerous or unwanted programs such as RiskTool or adware.

Country* % of users attacked** 1 Belarus 27.35 2 Algeria 24.23 3 Russia 23.91 4 Armenia 23.74 5 Moldova 23.61 6 Greece 21.48 7 Azerbaijan 21.14 8 Kyrgyzstan 20.83 9 Uzbekistan 20.24 10 Albania 20.10 11 Ukraine 19.82 12 Kazakhstan 19.55 13 France 18.94 14 Venezuela 18.68 15 Brazil 18.01 16 Portugal 17.93 17 Vietnam 17.81 18 Tajikistan 17.63 19 Georgia 17.50 20 India 17.43

These statistics are based on detection verdicts returned by the web antivirus module, received from users of Kaspersky Lab products who have consented to provide their statistical data.
* These calculations excluded countries where the number of Kaspersky Lab users is relatively small (under 10,000 users).
** Unique users whose computers have been targeted by Malware-class attacks as a percentage of all unique users of Kaspersky Lab products in the country.

On average, 16.61% of computers connected to the Internet globally were subjected to at least one Malware-class web attack during the quarter.

Geography of malicious web attacks in Q3 2017 (ranked by percentage of users attacked)

The countries with the safest online surfing environments included Iran (9.06%), Singapore (8.94%), Puerto Rico (6.67%), Niger (5.14%) and Cuba (4.44%).

Local threats

Local infection statistics for user computers are a very important indicator: they reflect threats that have penetrated computer systems by infecting files or removable media, or initially got on the computer in an encrypted format (for example, programs integrated in complex installers, encrypted files, etc.).

Data in this section is based on analyzing statistics produced by antivirus scans of files on the hard drive at the moment they were created or accessed, and the results of scanning removable storage media.

In Q3 2017, Kaspersky Lab’s file antivirus detected 198,228,428 unique malicious and potentially unwanted objects.

Countries where users faced the highest risk of local infection

For each country, we calculated the percentage of Kaspersky Lab product users on whose computers the file antivirus was triggered during the quarter. These statistics reflect the level of personal computer infection in different countries.

The rating of malicious programs only includes Malware-class attacks. The rating does not include web antivirus module detections of potentially dangerous or unwanted programs such as RiskTool or adware.

Country* % of users attacked** 1 Yemen 56.89 2 Vietnam 54.32 3 Afghanistan 53.25 4 Uzbekistan 53.02 5 Laos 52.72 6 Tajikistan 49.72 7 Ethiopia 48.90 8 Syria 47.71 9 Myanmar 46.82 10 Cambodia 46.69 11 Iraq 45.79 12 Turkmenistan 45.47 13 Libya 45.00 14 Bangladesh 44.54 15 China 44.40 16 Sudan 44.27 17 Mongolia 44.18 18 Mozambique 43.84 19 Rwanda 43.22 20      Belarus 42.53

These statistics are based on detection verdicts returned by on-access and on-demand antivirus modules, received from users of Kaspersky Lab products who have consented to provide their statistical data. The data include detections of malicious programs located on users’ computers or on removable media connected to the computers, such as flash drives, camera and phone memory cards, or external hard drives.
* These calculations exclude countries where the number of Kaspersky Lab users is relatively small (under 10,000 users).
** The percentage of unique users in the country with computers that blocked Malware-class local threats as a percentage of all unique users of Kaspersky Lab products.

This Top 20 of countries has not changed much since Q2, with the exception of China (44.40%), Syria (47.71%) and Libya (45.00%) all making an appearance. The proportion of users attacked in Russia amounted to 29.09%.

On average, 23.39% of computers globally faced at least one Malware-class local threat during the third quarter.

Geography of local malware attacks in Q3 2017 (ranked by percentage of users attacked)

The safest countries in terms of local infection risks included Estonia (15.86%), Singapore (11.97%), New Zealand (9.24%), Czechia (7.89%), Ireland (6.86%) and Japan (5.79%).

All the statistics used in this report were obtained using Kaspersky Security Network (KSN), a distributed antivirus network that works with various anti-malware protection components. The data was collected from KSN users who agreed to provide it. Millions of Kaspersky Lab product users from 213 countries and territories worldwide participate in this global exchange of information about malicious activity.

IT threat evolution Q3 2017

Kaspersky Securelist - 10 Listopad, 2017 - 11:09

Targeted attacks and malware campaigns [Re-]enter the dragon

In July, we reported on the recent activities of a targeted attack group called ‘Spring Dragon’ (also known as LotusBlossom), whose activities data back to 2012. Spring Dragon makes extensive use of spear-phishing and watering-hole attacks. The group’s targets include high-profile government agencies, political parties, educational institutions and telecommunication around the South China Sea – including Taiwan, Indonesia, Vietnam, the Philippines, Hong Kong, Malaysia and Thailand.

Most of the malicious tools implemented by Spring Dragon over the years are backdoors designed to steal data, execute additional malware components and run system commands on victim’s computers. These give the attackers the ability to undertake a variety of different malicious activities on their victims’ computers. The group maintains a large C2 infrastructure, comprising more than 200 unique IP addresses and C2 domains.

The large number of samples that we have collected have customized configuration data, different sets of C2 addresses with new hardcoded campaign IDs, as well as customized configuration data for creating a service for malware on a victim’s system – all of which makes detection more difficult.

We think it is likely that Spring Dragon, like many other targeted attack campaigns, is likely to re-surface in this region, so it is important for organisations to make effective use of good detection mechanisms such as YARA rules and IDS signatures.

You can read our report on Spring Dragon here.

Stepping-stones

One of the most striking aspects of the ExPetr attacks earlier this year was its primary attack vector: the attackers specifically targeted a company supplying accounting software to Ukrainian companies. Most of the victims of this wiper were located in Ukraine. However, it recently became clear that the attack has had a significant impact on some companies that operate worldwide. Among them are Maersk, the world’s largest container ship and supply vessel company. The company indicated in its earnings report that it expected losses of between $200 and $300 as a result of ‘significant business interruption’ caused by the ExPetr attack. Another was FedEx, which revealed that the operations of its TNT Express unit in Europe were ‘significantly affected’ by the attack, costing the company around $300 in lost earnings.

In recent months, we have seen further cases of attackers compromising software supply chain providers and using this as a stepping-stone into their chosen targets.

In July, we discovered suspicious DNS requests on the network of a customer working in the financial services industry: we found the requests on systems used to process transactions. The source of the DNS queries was a package for popular server management software developed by NetSarang. Customers of NetSarang, which has headquarters in South Korea and the United States, include companies working in financial services, energy, retail, technology and media. The attackers had modified one of the updates to include a backdoor.

NetSarang quickly removed the compromised update, but not before it had been activated at least once (we were able to confirm an activation on a computer in Hong Kong).

The attackers hide their malicious intent in several layers of encrypted code. The tiered architecture means that the business logic of the backdoor is not activated until a special packet has been received from the first tier C2 (Command and Control) server. Until then, it transfers basic information every eight hours: this includes computer, domain and user names. The payload is only activated through a crafted ‘dns.txt’ record for a specific domain. This allows the attackers to glean system information and send a decryption key to unlock the next stage of the attack, activating the backdoor itself.

This backdoor, called ShadowPad, is a modular platform that lets the attackers download and execute arbitrary code, create processes and maintain a virtual file system in the registry, all of which are encrypted and stored in locations unique to each victim.

You can read more about ShadowPad here.

Another supply-chain attack occurred in September, when attackers compromised an update to the Windows clean-up utility CCleaner, published by Avast. Researchers at Cisco Systems Talos Group discovered that attackers had modified the installer for CCleaner 5.3 to drop their malware on the computers of anyone who downloaded the utility. The malware, which was signed with a valid certificate, was active for a month and infected around 700,000 computers. The attackers used a two-stage infection process. The first delivered a profile of the victim to the attackers C2 servers, while the second was reserved for specific targets. You can find details of the analysis here.

It is sometimes tempting for companies to imagine that no one would want to target them – perhaps because they are not a large company, or because they do not believe that they have anything of significance to an attacker. However, even quite apart from their intellectual property, or personal information belonging to customers, they can be valuable as a stepping-stone into another organisation.

The bear facts

In August, we provided an update on an interesting APT that we call ‘WhiteBear’, related to the Turla group. Like Turla, WhiteBear uses compromised web sites and hijacked satellite connections for its C2 infrastructure. The project also overlaps with other Turla campaigns such as ‘Skipper Turla’ (or ‘WhiteAtlas’) and ‘Kopiluwak’ (both of which we detailed for subscribers to Kaspersky APT intelligence reports). In addition, we have found WhiteBear components on a subset of systems that were previously targeted by WhiteAtlas, with the same file-paths and identical filenames. Nevertheless, we have been unable to firmly tie the delivery of WhiteBear to any specific WhiteAtlas components, and we believe that WhiteBear is the product of a separate development effort and has a distinct focus.

For much of 2016, WhiteBear activity was narrowly focused on embassies and consulates around the world – all related to diplomatic and foreign affairs organisations. This shifted in mid-2017 to include defence-related organizations.

Although we’re not sure of the delivery vector for WhiteBear components, we strongly suspect that the group sends spear-phishing e-mails to its targets containing malicious PDF files.

The encryption implemented in the main module, the WhiteBear orchestrator, is particularly interesting. The attackers encrypt/decrypt, and pack/decompress the resource section with RSA+3DES+BZIP2. This implementation is unique and includes the format of the private key as stored in the resource section. 3DES is also present in Sofacy and Duqu 2.0 components, but they are missing in this Microsoft-centric RSA encryption technique. The private key format used in this schema and the RSA crypto combination with 3DES is (currently) unique to this group.

Most WhiteBear samples are signed with a valid code-signing certificate issued for ‘Solid Loop Ltd’, a once-registered British organization. This is probably a front organization or a defunct organization; and the attackers have assumed its identity to abuse the name and trust, in order to create deceptive digital certificates.

You can find full technical details of WhiteBear here.

(Un)documented Word feature abused by hackers

If a targeted attack is to be successful, the attackers must first gather intelligence on their prospective victims. In particular, they need details about the operating system and key applications, so that they can deliver the appropriate exploit.

During an investigation of a targeted attack, we found some spear-phishing e-mails with interesting Word documents attached to them. At first sight, they seemed unremarkable: they contained no macros, exploits or other active content.

However, on closer inspection, we found that they contained several links to PHP scripts located on third-party web resources. When we attempted to open these files in Microsoft Word, we found that the application addressed one of the links and, as a result, provided the attackers with information about software installed on the target computer. The documents were in OLE 2 (Object Linking and Embedding) format. OLE allows authors to embed objects and link to multiple objects or resources in a single Word document. For example, an author can created a field in a document that points to a graphic file, rather than simply embedding the graphic file.

We found a field in the document called ‘INCLUDEPICTURE’. The link to the image in this field should be in ASCII, but in this case, it was in Unicode. Microsoft documentation provides virtually no information about this field. However, the attackers manipulated the Unicode framework to trigger a GET request to malicious and obfuscated URLs contained in the underlying code of the Word document. These links then point to PHP scripts located on third-party web sites, enabling the attackers to gather information about the software installed on the computer.

This feature is not only present in Word for Windows, but also in Microsoft Office for iOS and in Microsoft Office for Android.

You can read further details about our investigation here.

Information security incidents and how to respond to them

Our growing dependence on technology, connectivity and data means that businesses present a bigger attack surface than ever. Targeted attackers have become more adept at exploiting their victims’ vulnerabilities to penetrate corporate defences while ‘flying under the radar’. Unfortunately, corporate information security services are often unprepared. Their employees underestimate the speed, secrecy and efficiency of modern cyber-attacks and businesses often fail to recognize how ineffective the old approaches to security are. Even where companies supplement traditional prevention tools such as anti-malware products, IDS/IPS and security scanners with detection solutions such as SIEM and anti-APT, they may not be used to their full potential.

You can’t manage what you can’t measure. One of the key factors in responding effectively to a targeted attack is to understand the nature of the incident.

In August, our incident response team used the example of a bank attack to present the key stages of a targeted attack (known as the kill chain) and the steps required for an effective incident response process. You can read the report here, but the following is a summary of the key elements.

The basic principles of a successful targeted attack include thorough preparation and a step-by-step strategy. The stages of the kill chain are:

  1. RECONNAISSANCE (learning about the target)
  2. WEOPANISATION (choosing the method of attack)
  3. DELIVERY (deciding on the attack vector)
  4. EXPLOITATION (exploiting a vulnerability to gain an initial foothold)
  5. INSTALLATION (installing the malware)
  6. COMMAND-AND-CONTROL (connecting to the attackers’ server for further instructions)
  7. ACTIONS ON OBJECTIVE (achieving the attackers’ goals)

The basic principles behind the work of information security staff are the same as the attackers – careful preparation and a step-by-step strategy. The objectives, of course, are fundamentally different: to prevent incidents and, if one occurs, to restore the initial state of the system as soon as possible.

There are two main stages involved in responding to a specific incident: investigation and system restoration. The investigation must determine

  • The initial attack vector
  • The malware, exploits and other tools use by the attackers
  • The target of the attack (affected networks, systems and data)
  • The extent of the damage (including reputational damage) to the organisation
  • The stage of the attack (whether or not it was completed and the attackers’ goals were achieved)
  • Timeframes (when the attack started and ended, when it was detected and the response time of the information security service)

Once the investigation has been completed, it is necessary to use the information learned to create a system recovery plan or, if one exists, to assess how it can be improved.

The overall strategy includes the following steps.

  1. PREPARATION (develop the tools, policies and processes needed to defend the organisation)
  2. IDENTIFICATION (decide if an incident has occurred by identifying pre-defined triggers)
  3. CONTAINMENT (limit the scope of the incident and maintain business continuity)
  4. ERADICATION (restore the system to its pre-incident state)
  5. RECOVERY (re-connect the affected systems to the wider network)
  6. LESSONS LEARNED (how well did the information security team deal with the incident and what changes need to be made to the strategy)

In the event of the information security team having to respond to multiple incidents simultaneously, it’s important to correctly set priorities and focus on the main threats. The key factors involved in determining the severity of an incident include:

  • The network segment where the compromised computer is located
  • The value of the data stored on that computer
  • The type and number of incidents that affect the same computer
  • The reliability of the IoCs (Indicators of Compromise) for this incident

The choice of computer, server or network segment to deal with first will depend on the specific nature of the organisation.

Malware stories The hidden advertising threat

As well as banking Trojans, ransomware and other threats that can clearly be defined as malware, people also face numerous borderline programs – including advertising bots and modules, and partnership programs – which are typically referred to as ‘potentially unwanted programs’. They are borderline because there is sometimes a fine line between classifying something as an outright Trojan or adware. One such program is Magala, a Trojan-Clicker.

Such programs imitate a user click on a particular web page, thus boosting advertisement click counts. Magala doesn’t actually affect the person whose computer it is installed on, other than consuming some of their computer’s resources. The victims are those who pay for the advertising – typically small business owners doing business with unscrupulous advertisers.

The first stage of the infection involves the Trojan checking which version of Internet Explorer is installed and locating it in the system. The Trojan doesn’t run if it’s version 8 or earlier. Otherwise, it initialises a virtual desktop, used to perform all subsequent activities. Then it runs a sequence of utility operations (typical for this type of malware): it sets up autorun, sends a report to a hardcoded URL, and installs the required adware. To interact with the content of an open page, Magala uses IHTMLDocument2, the standard Windows interface that makes it easy to use DOM tree. The Trojan uses it to load the MapsGalaxy Toolbar, installs this on the system and adds the site ‘hxxp://hp.myway.com’ to the system registry, associating it with MapsGalaxy so that it becomes the browser’s home page.

The Trojan then contacts the remote server and requests a list of search queries for the click counts that it needs to boost. The server returns this list in plain text. Magala uses the list to send the requested search queries and clicks on each of the first 10 links in the search results, with an interval of 10 seconds between each click.

The average cost per click in a campaign of this sort is $0.07. So a botnet consisting of 1,000 infected computers clicking 10 web site addresses from each search result, performing 500 search requests with no overlaps in the search results, could earn the cybercriminals up to $350 from each infected computer. However, this is just an estimate as the costs can vary greatly in each situation.

Statistics from March to early June 2017 indicate that most Magala infections occur in the United States and Germany.

This class of program typically doesn’t present as much of a threat to consumers as, for example, banking Trojans or ransomware. However, two things make it tricky to deal with. First, such programs straddle the borderline between legitimate and malicious software and it’s vital to determine whether a specific program is part of a secure and legal advertising campaign or if it’s illegitimate software making use of similar functions. Second, the sheer quantity of such programs means that we need to use a fundamentally different approach to analysis.

You can read more about Magala here.

It started with a link

Cybercriminals are constantly on the lookout for ways of luring unsuspecting victims into doing things that compromise their security and capture personal data. In August, David Jacoby from Kaspersky Lab and Frans Rosen from Detectify teamed up to expose one such campaign that used Facebook Messenger to infect people.

It started with a link to a YouTube video. The cybercriminals behind the scam used social engineering to trick their victims into clicking on it: the message contained the recipient’s first name, plus the word ‘Video’ – for example ‘David Video’ – and then a bit.ly link.

This link pointed to Google Drive, where the victim would see what looks like a playable movie, with a picture of them in the background and what seems to be a ‘Play’ button.

If the victim tried to play the video in the Chrome browser, they were redirected to what looked like a YouTube video and were prompted to install a Chrome extension –in fact, this was the malware. The malware waited for the victim to sign in to their Facebook account and stole their login credentials. It also captured information about their Facebook contacts and sent malicious links to their friends – so spreading the infection further.

Anyone using a different extension was nagged into updating their Adobe Flash Player instead – but the file they downloaded was adware, earning money for the cybercriminals through advertising.

This attack relied heavily on realistic social interactions, dynamic user content and legitimate domains as middle steps. The core infection point of the spreading mechanism was the installation of a Chrome Extension. It’s really important to be careful about allowing extensions to control your browser interactions and also to make sure that you know exactly what extensions you are running in your browser. In Chrome, you can type ‘chrome://extensions/’ into the address field of your browser to get a list of enabled extensions. On top of this, of course, be wary about clicking on links. If you’re in any doubt about whether it’s legitimate or not, contact the sender to check if it was really them who sent it.

Undermining your security

We have seen a substantial growth in crypto-currency miners this year. In 2013, our products blocked attempts to install miners on the computers of 205,000 people protected by Kaspersky Lab products. In 2014, this increased to 701,000. In the first eight months of 2017, this increased to 1.65 million.

Crypto-currency mining is not illegal. However, there are groups of people who trick unwitting people into installing mining software on their computers, or exploit software vulnerabilities to do so. The criminals obtain crypto-currency, while the computers of their victims slow down. We have recently detected several large botnets designed to profit from concealed crypto mining. We have also seen growing numbers of attempts to install miners on servers owned by organizations. When these attempts are successful, the business processes of the target organisations suffer because data processing speeds fall substantially.

The main method used to install miners is adware installers spread using social engineering. There are also more sophisticated propagation methods – one is using the EternalBlue exploit published in April 2017 by the Shadow Brokers group. In this case, the cybercriminals tend to target servers – these provide them with a more powerful asset.

We recently detected a network made up of an estimated 5,000 plus computers on which Minergate, a legal console miner, had been installed without the knowledge or consent of the victims. The victims had downloaded the installer from a file-hosting service, under the guise of a freeware program or keys to activate licensed products. This installer downloader the miner’s dropper file to their computer. This installed the Minergate software to the computer, ensuring that it is loaded each time the computer boots and re-installing it if it is deleted.

Often, crypto-miners come with extra services to maintain their presence in the system, launch automatically every time the computer boots and conceal their operation. Such services could, for example try to turn off security software, monitor system activities or ensure that the mining software is always present by restoring it if the files are deleted.

Concealed miners are very difficult to detect because of their specific nature and operating principles. Anyone can choose to install this kind of software and legally use it to mine a crypto-currency.

Monero (XMR) and Zcash are the two currencies most often used in concealed mining. They both ensure the anonymity of transactions – this is clearly very useful for cybercriminals. Even according to conservative estimates, a mining network can generate up to $30,000 per month for its owners.

The above image shows a wallet coded into the miner’s configuration data. At the time of writing, 2,289 XMR had been transferred from this wallet, which at the current exchange rate is equivalent to $208,299.

You can read more here.

Connected hospitals

Technology now reaches into more parts of society than ever before. As a result, organisations that previously didn’t need to think about cyber-security now face cyber-attacks. One example of this is the healthcare industry. Medical information that has traditionally existed in paper form is now to be found in databases, portals and medical equipment.

Data security in medicine is more serious than it seems at first glance. The obvious issue might be the theft and resale of medical data on the black market. However, the possibility of diagnostic data being modified by attackers is even more alarming. Regardless of the goals of the attackers (extortion or attacks targeted at specific patients), there’s a serious risk to patients: after receiving incorrect data, doctors may prescribe the wrong course of treatment. Even if the attempt to substitute data is detected in time, the normal operation of the medical facility may be disrupted, prompting the need to verify all of the information stored on compromised equipment. According to a report by the Centre for Disease Control and Prevention (CDC), the third leading cause of death in the United States comes from medical errors. Establishing a correct diagnosis depends not only on the knowledge and skill of a doctor, but on the correctness of data received from medical devices and stored on medical servers. This makes the resources for connected medicine a more attractive target for attackers. Unfortunately, in some cases, the security of the network infrastructure of healthcare facilities is neglected, and resources that process medical information are accessible from outside sources.

This term ‘connected medicine’ refers to a large number of workstations, servers, and dedicated medical equipment that are connected to the network of a medical institution (a simplified model is shown in the figure below).

Diagnostic devices can be connected to the LAN of an organization or to workstations- for example, through a USB connection. Medical equipment quite often processes data (for example, a patient’s photographs) in DICOM format, an industry standard for images and documents. In order to store them and provide access to them from outside, PACS (Picture Archiving and Communication Systems) are used, which can also be of interest to cybercriminals.

We have put together some recommendations for securing medical facilities. You can find the details here, but the following is a summary of the key points:

  1. Prevent public access to all nodes that process medical data
  2. Assign counter-intuitive names to resources
  3. Periodically update installed software and remove unwanted applications
  4. Don’t connect expensive equipment to the main LAN
  5. Ensure timely detection of malicious activity on the LAN

Judge bins sueball lobbed at Malwarebytes by rival antivirus maker for torpedoing its tool

The Register - Anti-Virus - 10 Listopad, 2017 - 01:44
Litigious security biz upset at blanket PC ban

Security software slinger Enigma has lost a key legal battle against antivirus maker Malwarebytes, which blocks and deletes Enigma's products from PCs.…

Kategorie: Viry a Červi

Learn client-server C programming – with this free tutorial from the CIA

The Register - Anti-Virus - 9 Listopad, 2017 - 23:49
Available now via everyone's favorite publisher, WikiLeaks – Отличная работа, Джулиан!

WikiLeaks has shoved online more internal classified stuff nicked from the CIA – this time what's said to be the source code for spyware used by Uncle Sam to infect and snoop on targets' computers and devices.…

Kategorie: Viry a Červi

US government seizes Texas gun mass murder to demand backdoors

The Register - Anti-Virus - 9 Listopad, 2017 - 22:49
Too early to talk gun control, not too early to bork iPhone security

While US President Donald Trump thinks it's too early to discuss gun control in the wake of Sunday's Texas church massacre – America's latest mass shooting – his Deputy Attorney General Rod Rosenstein is just fine exploiting the murder-suicide of 26 people to push for backdoors.…

Kategorie: Viry a Červi

Hackers hired for year-long DDoS attack against man’s former employer

Sophos Naked Security - 9 Listopad, 2017 - 20:22
Using a paid service meant he couldn't be traced but the FBI tracked him down

Eavesdropper Vulnerability Exposes Mobile Call, Text Data

VirusList.com - 9 Listopad, 2017 - 19:48
Developers using the Twilio platform to build enterprise mobile communications apps have put call and text data at risk for exposure.
Kategorie: Viry a Červi

$300m… deleted! How a tiny bug flushed away a fortune

Sophos Naked Security - 9 Listopad, 2017 - 16:01
The bug allowed a user to flush away hundreds of millions of dollars of other people's money
Syndikovat obsah